$\log _{5} 125=x$

$\log _{64} 2=x$

$\log _{4} 64=x$

$\log .01=x$

$\log _{2} \frac{1}{8}=x$

$\log _{6} 2=x$

$$
\begin{gathered}
\log _{2} 2+\log _{3} 3 \log _{4} 4=x \\
11 \times \log 10+\log 1=x
\end{gathered}
$$

Properties of Logarithms
Product Property: $\log _{\mathrm{b}}(m n)=\log _{\mathrm{b}}(m)+\log _{\mathrm{b}}(n)$

Power Property: $\log _{\mathrm{b}}\left(m^{n}\right)=n \cdot \log _{\mathrm{b}}(m)$

Quotient Property: $\log _{\mathrm{b}}(m / n)=\log _{\mathrm{b}}(m)-\log _{\mathrm{b}}(n)$

$\log (6 \cdot 11)$

$\log (5 \cdot 3)$

$$
\log \left(3 \cdot 2^{3}\right)
$$

$$
\log \left(x \cdot y \cdot z^{2}\right)
$$

$$
\log \left(\frac{6}{11}\right)^{5}
$$

$$
\log \left(\frac{6}{5}\right)^{6}
$$

$\log \sqrt[3]{x \cdot y \cdot z}$

$$
\log \frac{2^{4}}{5}
$$

Change of base formula

$$
\log _{c} a=\frac{\log a}{\log c}
$$

$\log _{3} 3.3$

$\log _{2} 30$

$\log _{7} 8.7$

$\log _{6} 13$

$\log _{9} 71$
 $\log _{3} 62$

