Apply other angle relationships in Circles

Theorem: If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is $1 / 2$ the measure of it's intercepted arc.

$$
\begin{aligned}
& m \angle 1=(1 / 2) m A C \\
& m \angle 2=(1 / 2) m A B C
\end{aligned}
$$

Angles Inside the Circle Theorem: If two chords intersect inside a circle then the measure of each angle is $1 / 2$ the sum of the measures of the arcs intercepted by the angle and its vertical angle

$$
\begin{aligned}
& m \angle \mathrm{BPC}=(1 / 2)(m \mathrm{AD}+m \mathrm{BC}) \\
& m \angle \mathrm{APC}=(1 / 2)(m \mathrm{AC}+m \mathrm{DB})
\end{aligned}
$$

Angles Outside the Circle Theorem: If a tangent and a secant, two tangents, or two secants intersect outside of a circle, then the measure of the angle formed is $1 / 2$ the difference of the measures of the intercepted arcs

Angles Outside the Circle Theorem

Angles Outside the Circle Theorem

