Graph the function: $\mathrm{f}(\mathrm{x})=2^{2}-1$
Domain: All Real \#s $f(x) \neq 0-1$
Range: $\quad />-1$
Asymptote: $y=-1$

x	y
-2	$-.75\left(-\frac{3}{4}\right)$
-1	$-.5\left(-\frac{1}{4}\right)$
0	0
1	1
2	3
3	7

Logarithms:

A log is a special way to ask a specific question.

What exponent (x) is required for base b to get to a ?

What exponent (x) is required for base b to get to a ?

$$
b^{x}=a
$$

February 23, 2017

$$
\begin{array}{ll}
\quad \log _{b} a=x & \leftrightarrow b^{x}=a \\
\log _{4} 64=\otimes & \log _{(4)} 2=x \\
4^{x}=64 & 64^{x}=2 \quad x=\frac{1}{6} \\
x=3 & \log _{₫}(16)=x \\
\log \cdot 01=x & \\
10^{x}=\frac{1}{100} \quad x=-2 &
\end{array}
$$

$$
\begin{array}{cc}
\log _{5} 125=x & \log _{343} 7=x \\
5^{x}=125 & 343^{x}=7 \quad x=\frac{1}{3} \\
\log _{5} 5^{3}=x \\
\log _{64} 2=x & \log _{6} 216=x \\
64^{x}=2 & 6^{x}=216 \quad x=3 \\
x=\frac{1}{6} & \log _{6}\left(0^{3}=x x=3\right.
\end{array}
$$

$$
\begin{aligned}
& \log _{6}^{\operatorname{logh}_{4} f^{3} 6}+\log _{4} \log _{4} 4^{2}=x \\
& 3+2=5 \\
& \log _{6} 6-\log _{4} 4-\log _{2} 2=x \quad x=-1 \\
& 1-1-1=-1 \\
& \log _{3} 3 \times \log _{1} 1=x \quad x=0 \\
& 1 \times 10^{\otimes 0}=1 \backslash \times 0=0
\end{aligned}
$$

February 23, 2017

$$
\begin{array}{ll}
\log _{\oplus 1} a=(2) & \log _{6} a=2 \\
a=16 & a=64 \\
\log _{10} a=3 & \\
a=1000 & \log _{2} a=5 \\
a=32
\end{array}
$$

Logarithmic Bingo Partners

Brian and William	Sammy and Katie
Esther and Zion	Carolyn and Yuna
Chris and HongRui	Wonjik and Dave
Clara and Seunyeun	Eugenia and Jonghoon
Christine and Jenny	Aurora, Irin, and Anna

February 23, 2017

