Solve the following for x

$$
\begin{array}{ll}
\sqrt{x}=6 & \sqrt[3]{x}=2 \\
x=2^{4} & x^{2}=4 \\
2=10^{x} & \log _{2} 8
\end{array}
$$

Definition of logarithm with base b

Let b and y be positive numbers.
$b \neq 1$. Then we have:

Can we solve for x now?

$$
\log _{2} 8 \quad 2=10^{x}
$$

Rewrite these in exponential form

$$
\log _{4} 1=0
$$

$\log _{12} 12=1$
$\log _{1 / 4} 4=-1$
$\log _{b} 1=b$
$\log _{b} 0=1$

Evaluate these logs
$\log _{4} 64$
$\log _{5} \frac{1}{2}$
$\log _{1 / 5} 125$
$\log _{36} 6$

Common logarithms

Common Log

Natural Log

$$
\log _{10} x=\log x \quad \log _{e} x=\ln x
$$

The sales of a video game can be modeled by $20 \ln (x-1)+35$, where y is the monthly number (in thousands) of games sold during the xth month after the game is released for same. Estimate the number of video games sold during the 10th month after the game is released.

Inverse functions
The logarithmic function $\mathrm{g}(\mathrm{x})=\log _{b} x$ and the exponential function $\mathrm{f}(\mathrm{x})=\mathrm{b}^{\mathrm{x}}$ are inverses of each other. So,

$$
\begin{gathered}
g(f(x))=\log _{b} b^{x}=x \\
\text { and } \\
f(g(x))=b^{\log _{b} x}=x
\end{gathered}
$$

Simplify the expressions:

$10^{\log 4}$
 $\log _{5} 25^{x}$

$e^{\ln 9}$
$\log _{3} 27^{x}$

Simplify the expressions:

$8^{\log _{8} x}$	$\log _{7} 7^{-3 x}$
$e^{\ln 20}$	$\log _{2} 64^{x}$

Graph of log

$g(x)=b^{x}$
$\rightarrow \mathrm{g}(\mathrm{x})=2^{\mathrm{x}}$
$f(x)=\log _{b}(x)$
$\rightarrow \mathrm{f}(\mathrm{x})=\log _{2}(\mathrm{x})$$h: y=x$

