Graph of General Rational Functions:

If $p(x)$ and $q(x)$ have no common factors, then the following is true:
$f(x)=\frac{p(x)}{q(x)}=\frac{a_{m} x^{m}+a_{m-1} x^{m-1} \ldots+a_{1} x+a_{0} \longleftarrow b_{n} x^{n}+b_{n-1} x^{n-1} \ldots+b_{1} x+b_{0}}{b^{2}} \begin{aligned} & \text { polynomial } \\ & \text { polynomial }\end{aligned}$

1. The x-intercepts are the zeros of $p(x)$
2. The vertical asymptotes are at the zeros of $q(x)$
3. There is at most 1 horizontal asymptote. The horizontal asymptote is determined by the degrees m and n.

How to determine where a horizontal asymptote is:

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a_{m} x^{m}+a_{m-1} x^{m-1} \ldots+a_{1} x+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1} \ldots+b_{1} x+b_{0}}
$$

If $m<n$	The line $\mathrm{y}=0$ is a horizontal asymptote
If $m=n$	The line $y=\frac{a_{m}}{b_{n}}$ is a horizontal asymptote

The graph has no horizontal asymptote

Determine where the horizontal and vertical asymptotes are and what the zeros of the function will be:

$$
f(x)=\frac{x-2}{x-4}
$$

Determine where the horizontal and vertical asymptotes are and what the zeros of the function will be:

$$
f(x)=\frac{x^{3}-x^{2}-6 x}{-3 x^{2}-3 x+18}
$$

Determine where the horizontal and vertical asymptotes are and what the zeros of the function will be:

$$
f(x)=-\frac{4}{x^{2}-3 x} \quad f(x)=\frac{x-4}{-4 x-16}
$$

$$
f(x)=\frac{x^{2}+2 x}{-4 x+8}
$$

Write an example of a rational function that would have a vertical asymptote at $x=-1$

Write an example of a rational function that would have a horizontal asymptote at $\mathrm{y}=0$

Write an example of a rational function that would have a horizontal asymptote at $\mathrm{y}=2$

Write an example of a rational function that would not have a horizontal asymptote.

Graph this function:

$$
f(x)=\frac{3}{x-2}
$$

Graph this function:

$$
f(x)=\frac{3}{x-2}
$$

Graph this function:

$$
f(x)=\frac{3 x^{2}-12 x}{x^{2}-2 x-3}
$$

