## What exponential functions do we know so far?

What do the variables represent here?

Compound Interest Formula:

What do the variables represent here?

# If I invest $\$ 1$, and am given a $100 \%$ interest rate, how much money will I have after 1 year if I compound over the following periods: 

## Round after 4 decimal places.

Yearly:
Every 6 months:
Every 3 months:
Every month:
Every week:
Every day:
Every hour:
Every minute:
Every second:

As we move towards compounding continuously, we find that A approaches 2.7182
$e$ is an irrational number like pi. It was first denoted by e by the Swiss mathematician Euler in 1731.
$e$ is used in formulas that are representing continuous growth or decay.

Continuously compounding Interest: $A=P e^{r t}$

$$
A=
$$

$$
P=
$$

$$
r=
$$

$$
t=
$$



Continuously compounding Interest:

$$
\begin{aligned}
& A=P e^{-r t} \\
& A=P(1 / e)^{r t}
\end{aligned}
$$



In 1950, the world's population was $2,555,982,611$. With a continuous growth rate of approximately $1.68 \%$, what was the population in1955?

At 5pm, you count 26,300 alien bacteria in your petrie dish. If the continuous growth rate is $\mathbf{2 . 7 \%}$, how many bacteria will there be at midnight?

Simplify the expressions:

$$
\begin{array}{ll}
4 x^{3} \cdot 2 x^{3} & \frac{x^{-1}}{x^{-8}} \\
\frac{6 x^{7}}{2 x^{4}} & x^{9} \cdot x^{-7}
\end{array}
$$

Simplify the expressions:
$\left(10 e^{-4 x}\right)^{3}$
$e^{7} \cdot e^{4}$
$2 e^{-3} \cdot 6 e^{5}$

$$
\frac{24 e^{8}}{6 e^{5}}
$$

