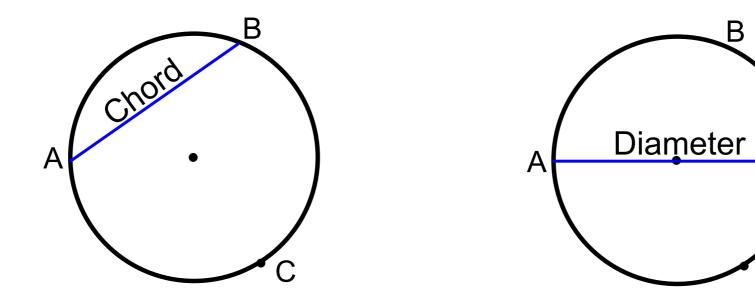
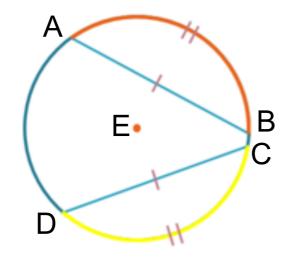
Apply Properties of Chords



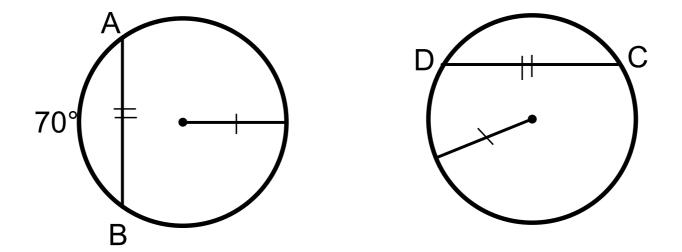
В

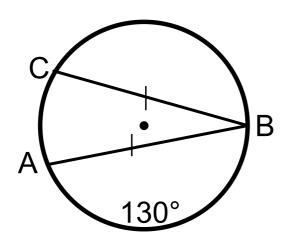
С

Theorem: In the same circles, or in congruent circles, two minor arcs are congruent *if and only if* their corresponding chords are congruent



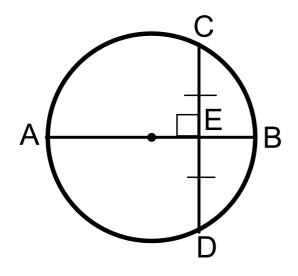
Are \overrightarrow{AB} and \overrightarrow{CD} congruent? What is the \overrightarrow{mDC} ?





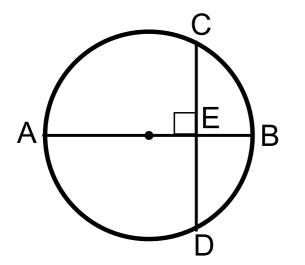
Find: $\overrightarrow{mCB} = \overrightarrow{mAC} =$

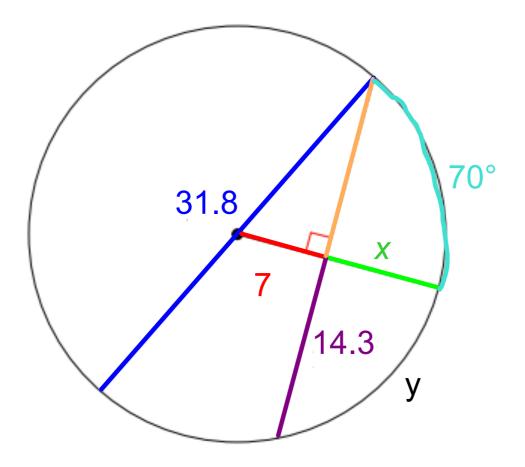
Theorem: If one chord a perpendicular bisector of another chord, than the first chord is a diameter.

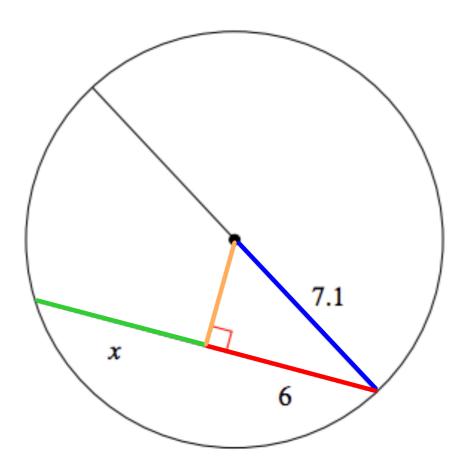


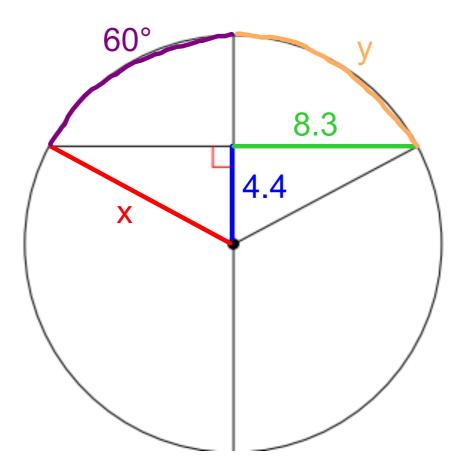
If \overline{AB} is a perpendicular bisector of \overline{CD} , then \overline{AB} is a diameter of the circle.

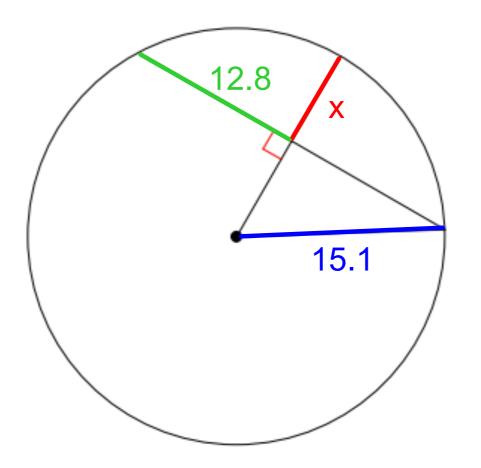
Theorem: If a diameter of a circle is perpendicular to a chord, then the diameter bisects the cord and its arc.





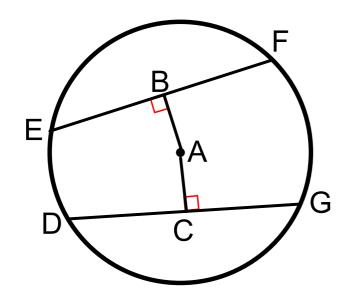


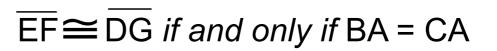


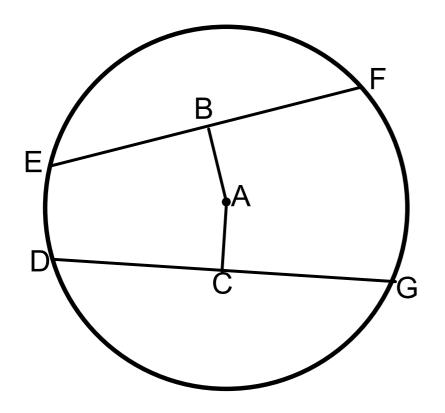


Congruent Chords

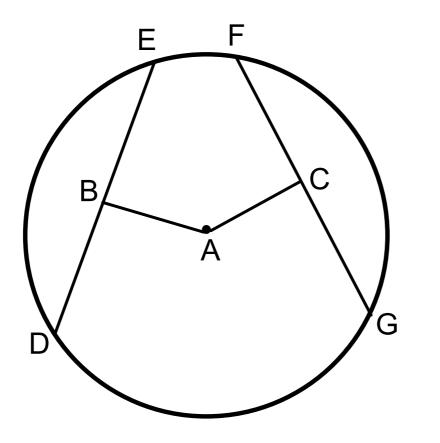
In the same circle, or congruent circles, two chords are congruent *if and only if* they are equidistant from the center



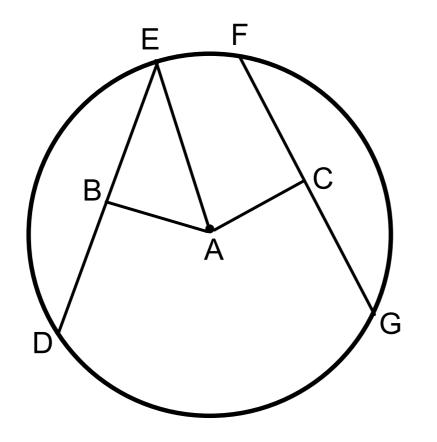




EF = 16 DG = 16 BA = 2x CA = 5x - 9



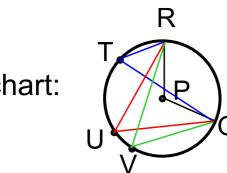
$$ED \cong FG$$
$$BA = 4x$$
$$CA = 3x + 7$$



ED = 16 BA = CA = 12 FG = AE =

Inscribed Angles:





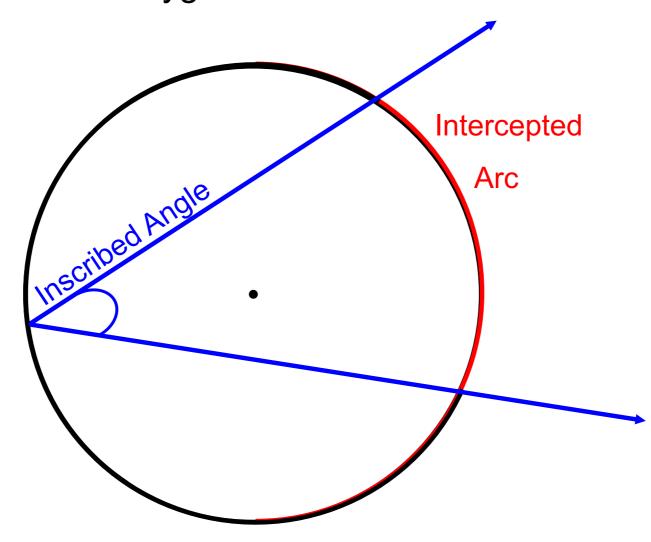
4. Fill in the chart:

	Central Angle	Inscribed angle 1	Inscribed angle 2	Inscribed angle 3
Name	∠RPQ	∠RTQ	∠RUQ	∠RVQ
Measure	??	??	??	??

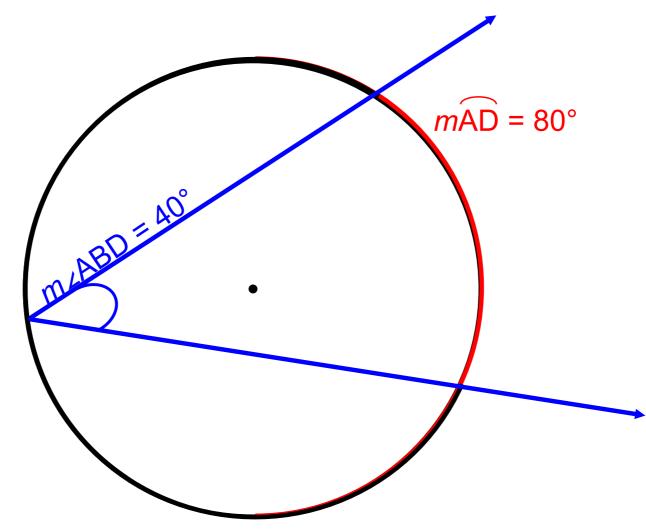
5. Repeat steps 1-4 with 2-3 other central angles.

6. Make a conjecture about the relationship between the inscribed angles and it's corresponding central angle.

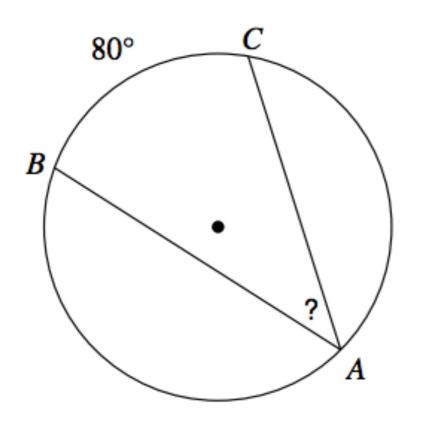
Inscribed angles and Polygons

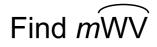


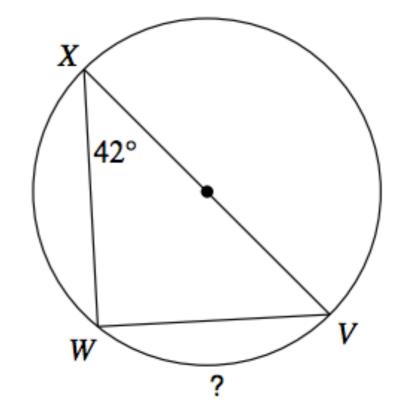
Theorem: The measure of an inscribed angle is 1/2 the measure of it's inscribed arc

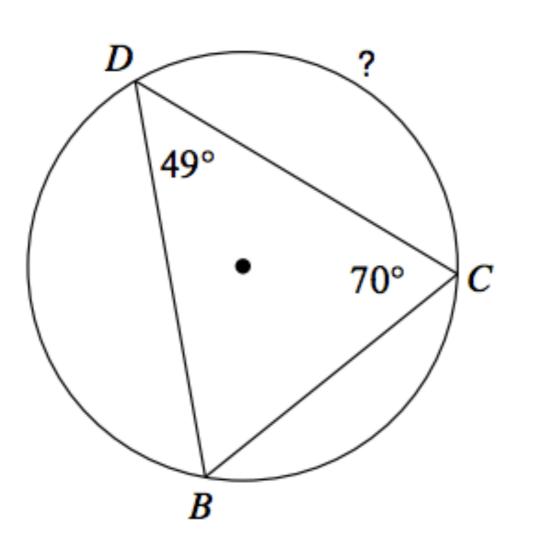


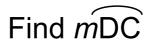
Find *m*∠BAC



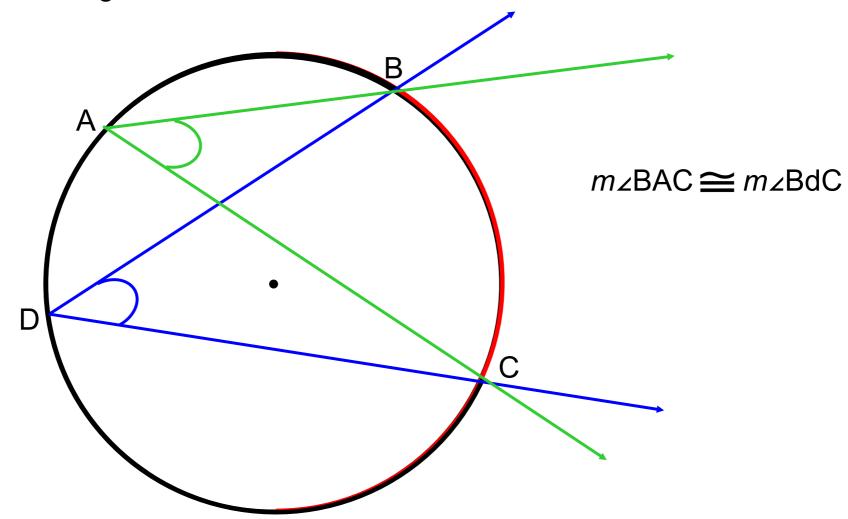


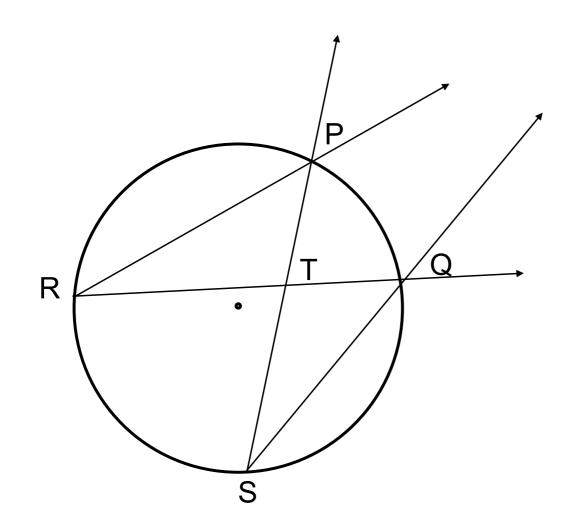






Theorem: If who inscribed angles of a circle intercept the same arc, then the angles are congruent





Find the missing values:

m∠RPS = 47.5

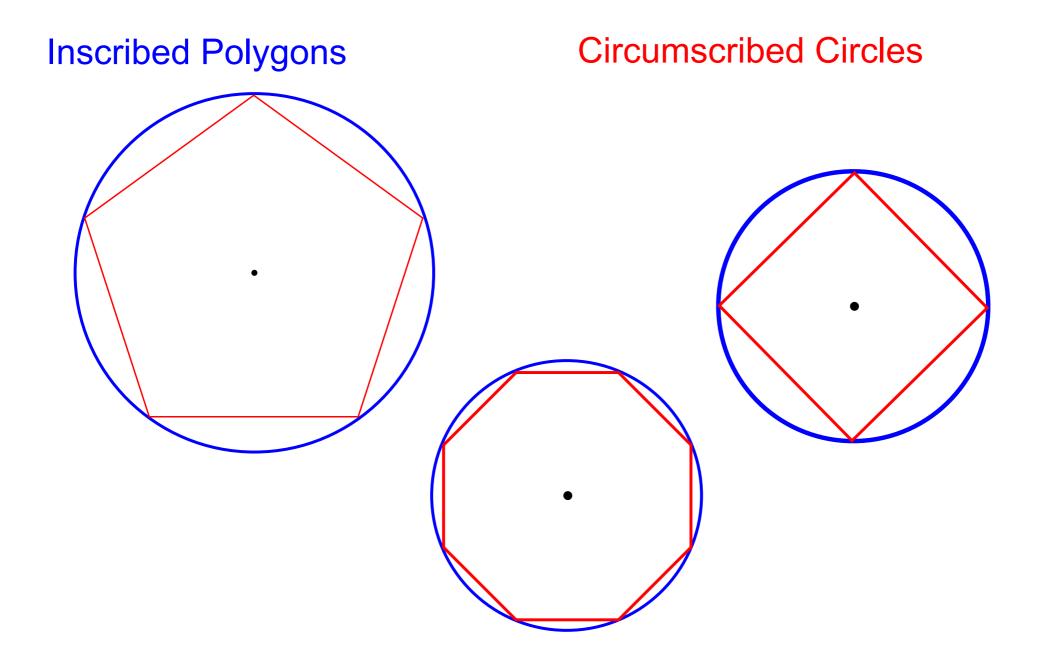
m∠RQS =

 \widehat{mRS} =

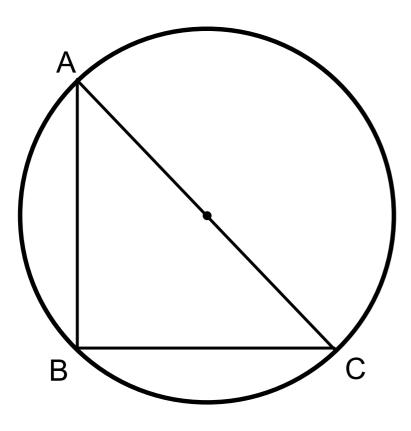
 $m \angle RTS =$

m∠PRQ =

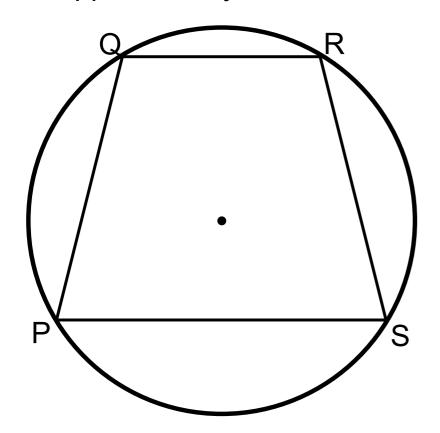
m∠PSQ=



Theorem: If a right triangle is inscribed in a circle, than the hypotenuse is a diameter. Also, if one side of an inscribed triangle is a diameter, than the angle opposite the diameter is 90°.



Theorem: A quadrilateral can be inscribed in a circle *if and only if* its opposite angles are supplementary



P, Q, R, S lie on the circle *if and only if:*

 $m \ge Q + m \ge S = 180^\circ$ and $m \ge P + m \ge R = 180^\circ$

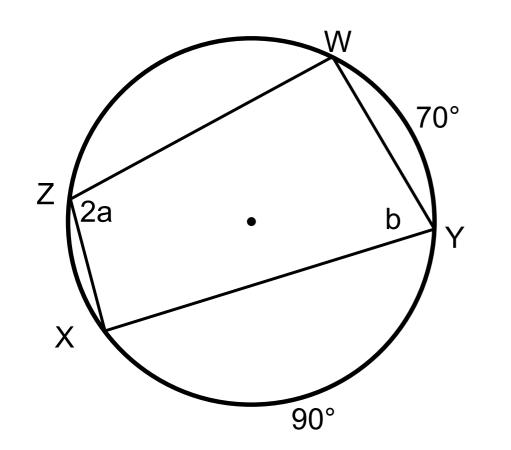
Prove that if a quadrilateral is inscribed in a circle then its opposite angles are supplementary.

A · B C Given: ABCD is inscribed in circle P

Prove: $m \ge A$ and $m \ge C$ are supplementary

 $m \ge B$ and $m \ge D$ are supplementary

*Not drawn to scale.



$$m \ge Z = 2a$$

 $\widehat{mWY} = 70^{\circ}$
 $\widehat{mYX} = 90^{\circ}$
 $a =$
 $b =$