Apply Properties of Chords

Theorem: In the same circles, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent

Are $\overparen{A B}$ and $\overparen{C D}$ congruent? What is the $m \overparen{m C C}$?

Find:

$m \overparen{C B}=$
$m \overparen{A C}=$

Theorem: If one chord a perpendicular bisector of another chord, than the first chord is a diameter.

If $\overline{\mathrm{AB}}$ is a perpendicular bisector of $\overline{\mathrm{CD}}$, then $\overline{\mathrm{AB}}$ is a diameter of the circle.

Theorem: If a diameter of a circle is perpendicular to a chord, then the diameter bisects the cord and its arc.

> If $\overline{\mathrm{AB}}$ is a diameter and $\overline{\mathrm{AB}} \perp \overline{\mathrm{CD}}$ then, $\overline{\mathrm{ED}} \cong \overline{\mathrm{EC}}$ and $\overline{\mathrm{CB}} \cong \overline{\mathrm{DB}}$

Congruent Chords

In the same circle, or congruent circles, two chords are congruent if and only if they are equidistant from the center

$\overline{\mathrm{EF}} \cong \overline{\mathrm{DG}}$ if and only if $\mathrm{BA}=\mathrm{CA}$

$$
\begin{aligned}
& \mathrm{ED}=16 \\
& \mathrm{BA}=\mathrm{CA}=12 \\
& \mathrm{FG}= \\
& \mathrm{AE}=
\end{aligned}
$$

Inscribed Angles:

1. Draw a circle and a central angle of that circle.

2. Draw 3 points on the circle on the exterior of angle RPQ.

3. Measure the angles created by these points and points R and Q

4. Fill in the chart:

	Central Angle	Inscribed angle 1	Inscribed angle 2	Inscribed angle 3
Name	$\angle \mathrm{RPQ}$	$\angle \mathrm{RTQ}$	$\angle \mathrm{RUQ}$	$\angle \mathrm{RVQ}$
Measure	$? ?$	$? ?$	$? ?$	$? ?$

5. Repeat steps 1-4 with 2-3 other central angles.
6. Make a conjecture about the relationship between the inscribed angles and it's corresponding central angle.

Inscribed angles and Polygons

Theorem: The measure of an inscribed angle is $1 / 2$ the measure of it's inscribed arc

Find $m \angle B A C$

Find $m \overparen{W V}$

Find $m \overparen{D C}$

Theorem: If who inscribed angles of a circle intercept the same arc, then the angles are congruent

Find the missing values:

$$
\begin{aligned}
& m \angle \mathrm{RPS}=47.5 \\
& m \angle \mathrm{RQS}= \\
& m \overparen{R S}= \\
& m \angle \mathrm{RTS}= \\
& m \angle \mathrm{PRQ}= \\
& m \angle \mathrm{PSQ}=
\end{aligned}
$$

Inscribed Polygons

Theorem: If a right triangle is inscribed in a circle, than the hypotenuse is a diameter. Also, if one side of an inscribed triangle is a diameter, than the angle opposite the diameter is 90°.

Theorem: A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary

P, Q, R, S lie on the circle if and only if:

$$
m \angle \mathrm{Q}+m \angle \mathrm{~S}=180^{\circ} \text { and } m \angle \mathrm{P}+m \angle \mathrm{R}=180^{\circ}
$$

Prove that if a quadrilateral is inscribed in a circle then its opposite angles are supplementary.

Given: $A B C D$ is inscribed in circle P
Prove: $m \angle \mathrm{~A}$ and $m \angle \mathrm{C}$ are supplementary $m \angle \mathrm{~B}$ and $m \angle \mathrm{D}$ are supplementary
*Not drawn to scale.

